Mindmap - Text

Expand
Minimise



  EARTH, MOON & SUN
  • EARTH
    • + - Shape & Size
      • Oblate spheroid, 13,000 km diameter
    • + - Terms
      • - Latitude & Longitude
      • - Meridian
      • - Poles & Circles
      • - Equator & Tropics
    • + - Inside the Earth
      • - Crust
      • - Mantle
      • - Outer core
      • - Inner core
    • + - Atmospheric Effects
      • - Sky colour
      • - Light Pollution
      • - Twinkling
    • + - Earth, Moon, Sun System
      • - Measuring Size & Distance
        • Eratosthenes, Aristarchus
      • - Sun: Diameter: 1,400,000km Distance: 150,000,000km
      • - Moon: Diameter: 3,500km Distance: 385,000km
    • + - AU (Astronomical Unit)
      • - Finding the AU
      • - Mean average distance between Earth and Sun
      • - 150,000,000 km

    MOON
    • + - Shape, Size & Distance
      • - Diameter: 3,500km
      • - Distance: 385,000km
    • + - Surface Formations
      • - Maria & Terrae
      • - Craters
      • - Mountains
      • - Valleys
    • + - Lunar Features
      • - Sea of Tranquility
      • - Ocean of Storms
      • - Sea of Crises
      • - Tycho
      • - Copernicus
      • - Kepler
      • - Apennine mountain range
    • + - Rotation & Orbit
      • - Far side not visible
      • - Synchronous rotation
      • - 27.3 days
    • + - The Far Side
      • - Less Maria
    • + - Origins
      • - Giant Impact Hypothesis
    • Inside the Moon
    • + - Libration
      • - Allows viewing of 59% of surface from Earth
    • + - Phases of the Moon
      • - Cycle – 29.5 days
      • - 2.2 days longer than Orbit period
      • - Phases
        • - New Moon
        • - Waxing Crescent
        • - Half Moon (First quarter)
        • - Waxing Gibbous
        • - Full Moon
        • - Waning Gibbous
        • - Half Moon (Third Quarter)
        • - Waning Crescent
        • - New Moon
    • + - Tides
      • - Spring & Neap
    • Facts & Data

    SUN
    • + - Safety
      • - Projecting
      • - Pinhole
      • - Welder's glasses
      • - Solar Filters
    • + - Structure
      • - Core
      • - Radiative and Convection Zones
      • - Photosphere
      • - Chromosphere
      • - Corona
    • + - Nuclear Fusion
      • - Proton-Proton Cycle
      • - Converts Hydrogen to Helium
    • + - Sunspots
      • - Measuring Rotation
      • - Solar Cycle
      • - Umbra / Penumbra
    • + - Rotation
      • - 25 days at equator, 36 days at poles
    • + - Wavelengths
      • - Electromagnetic Spectrum
    • + - Solar Wind
      • - Charged particles from Sun
      • - High Velocity – 400km per second
    • + - Eclipses
      • - Solar Eclipse
      • - Lunar Eclipse
      • - Partial (Both)
      • - Annular (Solar), Hybrid
    • - G2V Spectal Class

    TIME
    • + - Ancient Observations
      • - Agricultural systems
      • - Religious systems
      • - Time and calendar systems
      • - Alignments of ancient monuments
    • + - The Day
      • - Daylight
      • - Sidereal (stars)
      • - Synodic (solar)
    • + - Apparent & Mean Sun
      • - Apparent Solar Time (AST)
      • - Mean Solar Time (MST)
      • - Local Mean Time (LMT)
    • + - Equation of Time
      • - EOT = AST – MST
      • - MST = AST – EOT
      • - AST = MST + EOT
    • + - Sundial
      • - Shadow Stick
      • - Fixed to North/South
      • - Gnomon correct angle
      • - Plate shows hours to enable reading of timings
      • - Disavantages
        • - Requires Sunlight
        • - Not useful at night
        • - Need to use Equation of Time for accuracy
    • + - Shadow Stick
      • - Local Noon
      • - Longitude
    • + - Equinox & Solstice
      • - Vernal Equinox
      • - Summer Solstice
      • - Autumnal Equinox
      • - Winter Solstice
    • Daylight
      • - Sunrise & Sunset
    • + - Longitude
      • - Longitude = East/West of Prime Meridian
      • - 4 minutes = 1 degree, 1 hour = 15° of longitude
      • - Measuring
        • - Lunar Distance
        • - Horological
    • Time Zones
      • - Local Time

 
PLANETARY SYSTEMS
  • SOLAR SYSTEM
    • + - Scale & Size
      • - AU
      • - Distance km
    • + - Planets
      • Characteristics - Data
          Mercury   Venus   Earth   Mars   Jupiter   Saturn   Uranus   Neptune

    • + - Dwarf Planets
      • - Ceres
      • - Pluto
      • - Haumea
      • - Makemake
      • - Eris
    • + - Small Solar System Objects
      • + - Asteroids
        • - Asteroid Belt
        • - Planet Crossing
      • + - Meteor...Types
        • - Meteoroid - In Space
        • - Meteor - In Atmosphere
        • - Meteorite - Landed on surface
      • + - Meteor Showers
        • - Radiant
        • - Frequency
      • - Comets
        • + - Composition
          • - Coma
          • - Nucleus
          • - Tail - Ion, Dust
        • + - Comet Orbits
          • - Eccentricity / Retrograde
          • - Kuiper Belt
          • - Oort Cloud
      • + - Belts & Clouds
        • - Kuiper Belt
        • - Oort Cloud
        • - Heliosphere
      • Satellites
      • Rings

    MOTION
    • + - Geocentric & Heliocentric Model
      • - Ptolemy & epicycles
      • - Brahe
      • - Copernicus, Kepler, Galileo
    • + - Aphelion and Perihelion
      • - APHELION = Body FURTHER from Sun
      • - PERIHELION = Body NEARER to Sun
      • - APOGEE = Body FURTHER from orbiting body
      • - PERIGEE = Body NEARER to orbiting body
    • + - Ecliptic
      • - Sun, Most bodies, appear to move across plane
      • - Zodiacal Band
      • - First Point of Aries & Libra
    • + - Precession
      • - Archaeoastronomy
      • - Earth's axial wobble
      • - Change of apparent position of stars
      • - Axial tilt = 23.436°
      • - Circle of Precession = 25,772 years
    • + - Planet Motion
      • - Direct Motion
      • - Stationary Point
      • - Retrograde Motion
    • + - Terms
      • - Inferior / Superior Planets
      • - Conjunction & Opposition
      • - Transit & Occultation
      • - Elongation
    • + - Kepler's Laws
      • - 1st Law - Elliptical orbits
      • - 2nd Law - Movement faster nearer larger body
      • - 3rd Law - Relationship between orbital period and radius
        • - T² = r³
        • - Role of Mass
    • + - Gravity & Inverse Square Law
      • - Stable Orbits
      • - Product of Masses inverse to square of distance
      • - Brightness / Intensity

    PLANETARY FORMATIONS
    • + - Tidal & Gravity Factors
      • - Attraction
        • - Gravitational attraction
      • - Multiple Bodies
        • - Orbits changes, Chaotic motion, Resonances, Lagrangian Points
      • - Tidal Effects
        • - Ring systems, Asteroid belts & Internal heating
      • - Roche Limit
        • - Tidal gravitational and elastic forces
      • - Accidents
        • - Impact Craters,  Orbital motion changes, Planetary orientations
      • - Body Shape
        • - Spherical / Irregular shape
      • - Atmospheres
        • - Gravitational & Thermal factors
      • - Solar Wind Effects
        • - Comets, planetary atmospheres & Heliosphere
    • + - Gas Giants
      • - Composition
      • - Orbit / Distances
    • + - Water
      • - Condensation
      • - Comet Delivery
    • + - Finding Exoplanets
      • - Transit Methods
      • - Astrometry
      • - Radial velocity
    • + - Life Elsewhere
      • - Requirements
      • - Candidates
    • + - Goldilocks Zone
      • - Area surrounding a star in which a planet can have liquid water at its surface
    • + - The Drake Equation
      • - Estimate number of civilisations in galaxy
      • - N = R* x fp x ne x fl x fi x fc x L
    • + - Aliens Introductions
      • - Benefits
        • - Forms of Life to cure illness
        • - Share of knowledge
        • - Advances in technology
      • - Drawbacks
        • - New Bacteria to destroy life
        • - Dependence
        • - Aggressive invaders

    MISSIONS
    • Space Probes
      • + - Fly By
        • - Sensors measure & image features
        • - Speed means not all areas observed
        • - e.g. New Horizons (Outer Solar System)
      • + - Orbiter
        • - Can repeatedly observe the whole body
        • - Some changes can occur
        • - Limited amount can be told about surface
        • - Extensive manoeuvres needed
        • - e.g. Juno (Jupiter) or Dawn (asteroids Vesta and Ceres)
      • + - Impactor
        • - Can disturb internal materials for analysis
        • - Target observed en route
        • - Observation craft usually needed
        • - Difficulties in measuring
        • - e.g. Deep Impact (comet Tempel 1)
      • + - Lander
        • - Study immediate environment & take precise readings / experiments.
        • - Risk of landing & moving
        • - Limited capacity to move
        • - High cost of sterile manufacturing
        • - e.g. Philae (comet 67P/Churyumov–Gerasimenko)
    • + - Rockets
      • - Escape Velocity
      • - Energy Requirements
    • + - Manned Missions
      • - Versatility - ability to perform different tasks in different ways
      • - Improvisation - flexible & intelligent. Problem solving
      • - Opportunities to explore
      • - Resources; air, water and food needed
      • - Cost of Training
      • - Danger of losing life
      • - Long term health issues in space
    • + - Apollo
      • - Manned Mission to Moon
      • - Lunar Surface Experiments Package (ALSEPS)

    TELESCOPES
    • + - What you can see
      • - Stars
      • - Double stars
      • - Binary stars
      • - Open clusters
      • - Globular clusters
      • - Nebulae
      • - Galaxies
    • + - Focussing Light
      • - Limitations of human eye, aperture, low light
      • - Objective: The mirror or lens of a telescope
      • - Primary: The main objective
      • - Secondary: Usually a smaller eyepiece
    • + - Telescope Types
      • - Refractor - Galilean, Keplerian
        • - Convex lenses
      • - Reflector - Newtonian, Cassegrain
        • - Concave mirrors
    • + - Telescope Terms
      • - Aperture & Light Grasp
        • - Aperture = relative to diameter of objective
        • - Light Grasp - Proportional to area of objective element and square of diameter of objective
      • - Field of View
        • - Amount of sky visible in eyepiece
        • - Measured in degrees or arcminutes
      • - Magnification
        • - Focal length of objective divide Focal length of eyepiece
      • - Resolution
        • - Proportional to  diameter of objective
    • + - Digital Processing
      • - Sensors convert light into electrical signals
      • - Processed and stored as data files
    • + - Electromagnetic Spectrum
      • - Visible Light
      • - Infra Red
      • - Microwave
      • - Radio Waves
      • - Ultra Violet
      • - X-Rays
      • - Gamma Rays
    • + - Earth's Atmosphere & Wavelengths
      • - Allows Optical, Radio, Some Infrared at high altitudes
      • - Blocks most Ultraviolet, All X-rays & Gamma rays
    • + - Observatories
      • - Ground / Underground / Airbourne / Space
      • - Remote areas - no light pollution
      • - Radio - Far from transmitters
      • - High, Dry locations
    • + - Radio Telescopes
      • - How works
      • - Large apertures
      • - Array
      • - Discoveries
        • - Quasars, black holes jets, Milky Way structure, protoplanetary discs
    • + - Infrared
      • - High-altitude locations
      • - Discoveries
        • - Protostars, dust / molecular clouds, hotspots on moons
    • + - UV, X-Ray, Gamma
      • - Gamma ray bursts, Black hole accretion discs, Corona and Chromospheres
    • + - Space Telescopes
      • - Clearer observations, no distortion
      • - Wider wavelengths of electromagnetic spectrum observed
      • - No limitations to observing at night time
      • - Can image an area over the course of several days
      • - Exceptionally expensive to build and position in place
      • - Difficult to maintain
      • - Sensitive to bright nearby objects
    • + - Galileo
      • - Contribution to Heliocentric model

 
STARS & GALAXIES
  • CELESTIAL OBSERVATION
    • Constellations
      • + - Constellations
        • - 88 official
        • - Not usually gravitationally related
        • - Cassiopeia, Cygnus, Orion
      • + - Asterisms
        • - Pattern of stars not necessarily constellations
        • - Plough
        • - Orion's Belt
        • - Southern Cross
        • - Summer Triangle
        • - Square of Pegasus
      • + - Pointers
        • - Plough to Arcturus & Polaris
        • - Orion’s Belt to Sirius, Aldebaran & Pleiades
        • - Square of Pegasus to Fomalhaut & Andromeda galaxy
    • Motion of the Sky
      • + - Polaris
        • - North Celestial Pole
        • - Latitude of observer
      • + - Star Trails
        • - Length of the sidereal day
      • + - Circumpolarity
        • - Stars visible all year are circumpolar
        • - Others are seasonal
        • - Declination of Star >= 90° - Latitude of Observer
        • - Declination > Co-latitude
        • - Observer's Latitude ± Co-declination of star
    • Celestial Terms
      • + - Cardinal Points
        • - Compass Points
      • + - Culmination
        • - Upper Culmination is at its the highest point
        • - Lower Culmination is at its the highest point
        • - Co-declination (Distance between NCP and Star) = 90° - Declination
        • - Upper Culmination takes place when Right Ascension = LST
      • + - Meridian / Hour Angle
        • - Imaginary line between north and south poles through the observer's position
        • - Hour Angle of star = Local Sidereal Time- Right Ascension of star
      • + - Zenith
        • - Zenith is the point directly above the observer's head. 90° perpendicular to the ground
        • - Nadir is the point directly below the observers feet
      • + - Co-latitude & Co-declination
        • - Difference between 90° and the observers latitude
        • - Distance a star is from the celestial pole (polar distance)
    • + - Circumpolar & Seasonal Stars
      • - Circumpolar Calculations
    • Celestial Sphere
      • + - Equatorial Coordinates
        • - Right Ascension / Declination
      • + - Horizon Coordinates
        • - Altitude / Azimuth
    • Planning to Observe
      • + - Visibility & Light Pollution
        • - Rising and setting
        • - Seeing conditions
        • - Weather conditions
        • - Landscape
      • + - Viewing Techniques
        • - Dark adaptation
        • - Averted vision
        • - Relaxed eye
      • + - Charts
        • - Star Charts
        • - Planispheres
        • - Computer Programs
        • - Apps
      • + - Names
        • - Messier / NGC
        • - Labelling

    STARLIGHT
    • + - Angles
      • - Degree ° = 360th of a circle
      • - Arcminute ′ = 0th of a degree
      • - Arcsecond ″ =  60th of an arcminute
    • + - Light Year / Parsec
      • - Distance light travels in an earth year
      • - 9 trillion km
      • - 3.26 light years based on arc
    • + - Magnitude
      • + - Apparent
        • - m
        • - How bright an object is to us on Earth
        • - Scale moves x 2.5
        • - m = M-5+5 log d
      • + - Absolute
        • - M
        • - How bright a star would appear in space from a certain distance (10 parsecs)
        • - M = m + 5 - 5 log D
    • + - Distances - Heliocentric Parallax
      • - Measuring star position six months apart from Earth to calculate distance
    • + - Stellar Spectrum
      • - Distributed colour and lines tell us:
      • - Chemical composition
      • - Temperature
      • - Radial velocity
    • + - Classification
      • - Classified by Colour/Temperature/Composition
      • - Main Categories O B A F G K M
    • + - H-R Diagram
      • - Absolute magnitude by Temperature
      • + - Life cycle shown by position
        • - Main sequence stars
        • - The Sun
        • - Red and blue giant stars
        • - White dwarf stars
        • - Supergiant stars
      • - Spectroscopic Parallax to determine distance
    • + - Light Curves
      • - Variable Periodic
        • - how bright an object is over a period of time. variable stars
      • - Eclipsing Binaries
        • - one star moves in front of another
      • - Cepheids
        • - star used to calculate distances, period-luminosity relationship
      • - Nova / Supernova
        • - explosion of a star

    STELLAR EVOLUTION
    • + - Gravity & Pressure
      • - Main Sequence
        • - Radiation Pressure vs. Gravity
      • - White Dwarf
        • - Electron Pressure vs. Gravity
        • - Chandrasekhar Limit (1.4 Solar Masses max.)
      • - Neutron Star
        • - Neutron Pressure vs. Gravity
    • + - Emission & Absorption Nebula
      • - Clouds of high temperature gas
    • + - Planetary Nebula
      • - Outer shell of former red giant
    • + - Nova & Supernova
      • + - Nova
        • - Higher mass star in binary gathers solar material from neighbour and explodes material
      • + - Supernova
        • - As nova but destroys star OR Red giant core collapses on itself neutron star or black hole
    • + - Black Holes
      • - Accretion Disc
      • - Event Horizon

    GALAXIES
    • + - The Milky Way
      • - Naked eye - appears lighter, thick band
      • - Sb (Spiral barred) galaxy
      • - Plane 100 to 150,000 light years across, 1,500 light years thick
      • - Sun is 30,000 light years, 226 million years a galactic orbit
      • - Dust around halo & along spiral arms
      • - Globular clusters surround the halo
      • - Star clusters near the arms
    • + - Groups
      • - Clusters
      • - Superclusters
      • - Local Group
        • - Andromeda Galaxy (M31)
        • - Large and Small Magellanic Clouds
        • - Triangulum Galaxy (M33)
    • + - Types
      • - Tuning Fork Classification
      • - Spiral
      • - Barred Spiral
      • - Elliptical
      • - Irregular
    • + - Formation & Evolution
      • - Gas and dust gathered & collapsed
      • - Lumps of matter left over from the Big Bang grouped together
      • - Mergers
    • + - Active Galaxies
      • - Emit large quantities of radiation
      • - Seyfert galaxies
      • - Quasars
      • - Blazars

    COSMOLOGY
    • + - Expanding Universe
      • - Galaxies moving away from each other
    • + - Doppler & Redshift
      • - Moving away = Longer Wavelength
      • - Redshift observed in galaxies moving away from each other
      • - Local Group - moving together, displays slight blueshift
    • + - Velocity
      • - How fast a galaxy moves + - image formula
        • - λ = observed galaxy wavelength
        • - λ0 = rest wavelength of the galaxy
        • - v = the velocity of a galaxy
        • - c = the speed of light (300,000 km/s)
    • + - Hubble's Law & Constant
      • - Number used to measure age of universe
      • - Relationship between distance & redshift of distant galaxies
      • - v = H0d
        • - v = recession velocity H0 = Hubble constant  D = distance to galaxy (mega parsec - Mpc)
    • + - Origin of the Universe
      • - Steady State Theory - Universe always existed and will continue to
      • - Big Bang - Widely accepted
      • - Inflationary Universe Theory - other universes exist
      • - Cyclic / Oscillating Universe - expands, contracts, repeats
    • + - Big Bang Theory
      • - Universe created from a singularity
      • + - Arguments
        • - Expanding Universe evidence
        • - Cosmic Microwave Radiation evidence
        • - Hydrogen and helium abundance
        • - Causes? What occured?
        • - Not enough mass to account for expansion
      • + - Evidence
        • - QUAsi StellAR objectS: Galaxies emitting large x-rays
        • - Cosmic Microwave Background: Heat left over from the Big Bang
        • - Hubble Deep Field: Long exposure image capturing numerous galaxies in area thought devoid of them
    • + - Dark Matter & Energy
      • - Dark Matter - Mass (not observed) makes galaxies move faster
      • - Dark Energy - (Not observed) force that pushes galaxies away from each other
    • + - Universe Models
      • - Big Rip - atoms get torn apart
      • - Big Crunch - universe shrinks and collapses
      • - Big Freeze - all energy ends, cold universe


.